Calculation of Fractional Age Life Insurance Net Premium Liability Reserve
Based on A-Power Death Assumption

Ren Liying"
School of Finance and Statistics, Hunan University, Hunan, China, 410006

*Corresponding to: Ren Liying, School of Finance and Statistics, Hunan University, Hunan,
China, 410006, 2246957936(@qg.com

Abstract

This article discusses the survival rate of fractional age and the net premium liability
reserve for fractional age based on the a-power death hypothesis (specifically divided
into cases of paying once a year and paying m times a year), combined with the
specific data of the life table with the help of R language and Actuarial software such
as crystal ball compares the specific data fitted by the a-power hypothesis with the
three traditional hypotheses, and finally concludes that the use of the a-power death
hypothesis can improve the accuracy of fitting the fractional age survival rate and the
life insurance net premium liability preparation The prediction accuracy of gold, this
conclusion will provide a more accurate idea for all insurance companies and social
institutions to calculate the fractional age net premium liability reserve.
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1.Introduction

In life insurance actuarial science, the calculation of actuarial present values used for
pricing various insurance products is based on prior information—specifically, mortality
tables derived by institutions through establishing target populations and subsequent tracking.
However, mortality tables typically only reflect survival and mortality data for whole-number
ages, failing to capture survival and mortality patterns at fractional ages. This significantly
wastes valuable information about mortality and survival conditions within the intervals
between whole-number ages. Consequently, all data pertaining to whole-number ages is only
applicable for calculating actuarial present values in scenarios involving premiums or discrete
annuity payments. In reality, however, the number of deaths occurring at fractional ages far
exceeds those at integer ages. If integer-age data alone is used to directly estimate mortality
rates between integer ages, it introduces errors into premium calculations, annuity payouts,
and life insurance reserve accruals. This creates unfairness for insurance policyholders. This
also impacts insurers' operating costs and profits, often affecting their accounting practices.
Consequently, financial reports may fail to accurately reflect the company's operational status,
violating the principles of truthfulness and prudence required by accounting standards. This
misleads users of insurance financial reports, potentially leading to unforeseeable
consequences. In this context, making assumptions and fitting the distribution of survival
functions at fractional ages becomes particularly crucial. More accurate assumptions and
fitting significantly enhance the prediction accuracy of survival and mortality at fractional
ages, thereby optimizing the precision of actuarial present value calculations at these
fractional ages.

Research on fractional age assumption distributions has been ongoing among scholars
both domestically and internationally, yielding numerous breakthroughs. Traditional, more
classical fractional age assumptions include the linear assumption, exponential assumption,
and harmonic assumption. These three traditional assumptions essentially involve linear
interpolation, exponential interpolation, and hyperbolic interpolation of mortality data at
fractional ages. In reality, survival or mortality between fractional ages is discontinuous rather
than continuous. Applying these three assumptions to estimate mortality and survival rates at

fractional ages, and then using these estimates to calculate annuities, net premiums, and



liability reserves, leads to significant computational errors. This results in low accuracy of the
calculated data, often rendering the outcomes of these calculations unusable and of limited
reference value. In recent years, China's insurance industry has experienced rapid growth.
With the evolution of insurance products and heightened public awareness of insurance,
demand for insurance products continues to rise. Researchers have consistently pursued
optimizations and reforms in fractional age distribution assumption fitting. One notable
advancement is the a-power assumption proposed by Jones in 2000. This hypothesis
significantly enhances the accuracy of fractional age distribution fits and the precision of
actuarial present value calculations. The following discussion begins with an introduction to
the fundamental principles of the a-power hypothesis, followed by an intuitive graphical
comparison with the distribution results of three traditional hypotheses. The superiority of the
a-power mortality hypothesis is demonstrated through numerical comparisons of three error
metrics. Finally, the paper discusses the net premium liability reserve for life insurance based
on the a-power mortality hypothesis.

For the sake of convenience in the following discussion, the following symbols are

introduced:
Symbol annotations
Table 1
symbol annotations
(x) A x -year-old person
t (x) years of survival time (0<t<l)
H Death Force
S(x) Survival function
s(x) Survival density function
F(x) x ’s distribution function
f(x) X ’s density function
[(x) The number of newborns expected to survive to age 1 year
q, Probability of death within the next year
D, (x) will live to be (x+1) years old




L(x+t) Death Power Function

L Prospective Loss

T(x) Remaining lifespan for a person of x years

K(x) The remaining lifespan in whole years for a person aged x years
V Reserve for liabilities

P Net premiums

A Actuarial present value of life insurance

a The present value of a survival annuity

w The maximum human age

2.Analysis of a -power death hypothesis and model fitting for three

traditional hypotheses

2.1 Model theory
When discussing the value of [(x) at non-integer points, the analysis is typically

conducted in segments, generally with one year as a segment. Therefore, the following

discussion concerns [(x+1) for any integer x(x=0,1,2,...,0—1) and arbitrary

t(O <t< 1) , given that /(x) and /(x+1) are known.

1.a-power assumptions

The Jones assumptions has the following form (a #0) :
s(x+0)"=A-1t)s(x)* +ts(x+1)“ (1)
4, =1=(=t+1p,)"" )

(1 _p )l/a

3
a(l-t+tp ) @

,u(x+t):

2. Three traditional assumptions

(1) Linear assumption. The linear hypothesis, also known as the UDD hypothesis,
essentially involves linear interpolation of the functional distribution across ages. This

interpolation method is based on the assumption that /(x+¢) takes the following linear

form:
I(x+t)=(1—t)l(x)+2l (x+1)(4)

Under this assumption, there is:



s(x+t)=(1-1)s(x)+ts(x+1)(5)
P, =1-1q,(6)
4. =1q,.(7)

9.

8
i ®

M (x + t) =
(2) Index assumption. The exponential assumption, also known as the log-linear
assumption or constant mortality assumption, posits that /(x+¢) takes an exponential form,

meaning it can be expressed as ab' . Under this assumption:
In/(x+t)=(1-0)(x)+tInl (x+1)(9)
Ins(x+)=(-t)Ins(x)+Ins(x+1)(10)
Py = g, (11)
4, =1-(1-¢,) (12)

,u(x+t) =-log p (13)
(3) Hyperbolic assumption. The hyperbolic assumption, also known as the harmonic

assumption or Balducci's assumption, posits that /(x+¢) takes the form of a hyperbola,

meaning it can be expressed as (a+b0)™":

1 l—tJr t (14)
l(x+t)_ l(x) l(x+t)

Under this assumption, there is:

1 1-1¢ t
s(x+1) B s(x)+s(x+1) (13)

p
=—5 (16
1q
= . 17
_ 4q.
p(x+t)= (1-1)g. (18)

2.2 Error analysis of the precision of four hypothesis fits using R

To compare the fit of four assumptions, this paper developed a program in R software



based on data from the Chinese Life Insurance Industry Experience Tables (Male Table,
Non-Pension Business, 2010-2013). Four traditional assumption models were constructed,
and interpolation was performed for each assumption using even-aged data as known values.
The interpolated results for odd-aged data were then compared and analyzed against the
actual values from the life tables.

To ensure clear numerical results for the four hypotheses, facilitating comparative
analysis and assessment of fitting accuracy, this paper also employs three commonly used
criteria for evaluating error magnitude to assess the interpolation performance of these
different hypotheses.

These criteria are:

n

Z(A, _B[)2

Root mean square error: RMSE = \|-=, (19)
Maximum absolute error: MAE = max| A, — B| n=123..... (20)
D1 4-B|
Mean absolute error: AAE ==——— (21)
n

Where n is the number of fractional age points, A4 is the actual survival function

value, and B, is the predicted survival function value under different interpolation

assumptions.
Evaluation criteria
Table 2
Evaluation Relationship between numerical values | Measurement criteria
Criteria and model accuracy
RMSE The smaller the value, the more accurate | Assess the overall model
the model accuracy
MAE The smaller the value, the more accurate | Measuring local model
the model accuracy
AAE The smaller the value, the more accurate | Assess the overall model
the model accuracy
Chinese life insurance industry experience life tables (2010-2013)
Table 3
Non-Pension Business Non-Pension Business . )
age Pension Business Form
Form 1 Form 2




Male Female Male (CL3) Female Male (CL5) Female
ale ale
(CLD) (CL2) (CL4) (CL6)
0 0.000867 0.00062 0.00062 0.000455 0.000566 0.000453
1 0.000615 0.000456 0.000465 0.000324 0.000386 0.000289
2 0.000445 0.000337 0.000353 0.000236 0.000268 0.000184
3 0.000339 0.000256 0.000278 0.00018 0.000196 0.000124
4 0.00028 0.000203 0.000229 0.000149 0.000158 0.000095
5 0.000251 0.00017 0.0002 0.000131 0.000141 0.000084
1. Interpolation results
Interpolation results for four assumptions
Table 4
s(x) 1 3 49 51
a -power assumption 0.99897 0.998022 | --- 0.953641 | 0.945865
UDD assumption 0.999259 | 0.999608 | --- 0.996282 | 0.995549
Linear assumption 0.999259 | 0.999608 | --- 0.996289 | 0.995559
Hyperbolic assumption | 0.999259 | 0.999735 | --- 0.996296 | 0.995569

The following discussion pertains to the values of a:
According to Jones' a-power hypothesis at integer age points: The left limit and right

limit of the mortality function are equal, yielding:

l_pxa"‘ =1_px+1 x* x=0,1)2 ...... 0)_2(21)
axpx ! a

x+1
Assuming further that the logarithmic function of the force of death achieves a minimum
when the sum of the squares of the differences between the left and right derivatives at all

integer age points is minimized, we can obtain the values of o at different ages.

a & a (24
IOg lux+z|t:1 _alog lux+t+1|t:0)2 = Z (px ' +px+1 . '2)2 (22)

x=0
For the sake of discussion, this paper makes the following assumptions:
Assuming that o remains constant across different age groups and takes specific values
of -10000, -1000, -100, -10, -0.00001, and 0.00001 when input into the model, interpolation

calculations for odd ages yield the following results:

Interpolation results for different o values

& 1 3 49 51
(24
-10000 0.999174 0.998098 0.953975 0.94623
-1000 0.999174 0.998098 0.953975 0.94623



-100 0.999174 0.998098 0.953975 0.94623

-10 0.999174 0.998098 0.953975 0.94623

-0.00001 0.99897 0.998022 0.953641 0.945865

0.00001 0.99897 0.998022 0.953641 0.945865
Table 5

To obtain a more accurate o fitting value, the sum of squares of the left and right

derivatives at all integer age points is used as a parameter to evaluate the quality of the fit.

Sum of squares of differences between left and right derivatives for different a

Table 6
o Sum of the squares of the left and right
derivatives
-10000 1.5539E+302
-1000 5.7993E+211
-100 7.7312E+252
-10 3.86948E+55
-0.00001 3.53183E-12
0.00001 3.53183E-12

It can be seen that the best fit is achieved when a is set to -0.00001. Therefore, all

instances of a in this study are assumed to be -0.00001.

2. Visualization

(1) a-power assumption
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The ten figures above provide a visual representation of the fitting performance for the
a-power hypothesis and the three traditional hypotheses. First, analyzing the goodness-of-fit
for the three traditional hypotheses: all three hypotheses exhibit relatively ideal fitting in the
early age range but perform poorly in the middle and late age ranges. Among them, the
hyperbolic hypothesis performs the worst, with its fitting in the middle and late stages failing
to adequately reflect the true value levels. It is evident that among the three traditional
assumptions for fitting survival functions at fractional ages, the constant mortality assumption
and uniform distribution assumption perform moderately, while the hyperbolic assumption is
the least effective at reflecting reality. When comparing the fitting results with the a-power
assumption, it becomes clear that the a-power assumption better fits survival patterns at
fractional ages than the three traditional assumptions. It accurately reflects survival and
mortality status at fractional ages throughout the entire human lifespan.

In practical applications, the a-power mortality assumption should be prioritized for
fitting unknown fractional ages. Alternatively, the constant mortality rate or uniform
distribution assumptions may be considered for approximating fractional ages during the
early stages of human survival. The hyperbolic assumption should only be employed as a last

resort.

3. Calculation results for three evaluation criteria
Calculation results for three evaluation criteria

Table 6

Different a-power Linear Hyperbolic
. UDD
assumptions

Evaluation criteria

RMSE 0.000320 0.000371 | 2.48712E-05 | 0.001082




MAE
AAE

6.92718E-06 0.000127 | 0.000126 0.000128
0.000914 0.006474 | 0.002495 0.012227

The above values yield a result consistent with that observed from the graphical
representation, where:

RMSE: RMSEI<RMSE3<RMSE2<MSE4

MAE: MAEI<MAE3<MAE2<MAE4

AAE: AAEI<AAE3<AAE2<AAFE4

Based on the root mean square error (RMSE1 < RMSE3 < RMSE2 < MSE4) and
average absolute error (AAE1 < AAE3 < AAE2 < AAE4), the following conclusion can be
drawn: Overall, the a-power mortality distribution hypothesis among the four hypotheses
provides the best fit, with the smallest discrepancy between predicted and actual values,
resulting in the lowest root mean square error and average absolute error values. The uniform
distribution hypothesis fits less well than the o-power mortality distribution hypothesis.
Compared to the constant mortality rate and hyperbolic hypotheses, it outperforms the
hyperbolic hypothesis but underperforms the constant mortality rate hypothesis. The mean
square error and mean absolute error values of the constant mortality assumption fall between
those of the a-power mortality distribution and hyperbolic assumptions. This precisely
indicates that, compared to the best-fitting a-power mortality assumption and the worst-fitting
hyperbolic assumption, the uniform distribution and constant mortality assumptions exhibit
intermediate fitting performance among the four traditional assumptions.

From a local perspective, since the maximum absolute errors follow the order MAEI1 <
MAE3 < MAE2 < MAE4, the a-power mortality distribution hypothesis demonstrates the
best local fitting performance among the four hypotheses. Among the three traditional
hypotheses, the uniform distribution hypothesis and constant mortality hypothesis exhibit the
next best local fitting performance, while the hyperbolic hypothesis shows the poorest local
fitting performance.

The results from calculating the root mean square error, maximum absolute error, and
mean absolute error clearly demonstrate from a data perspective that, whether viewed
holistically or locally, the a-power hypothesis among the three traditional hypotheses exhibits
the best fit. The uniformly distributed hypothesis and constant mortality hypothesis yield the
next best results, while the hyperbolic hypothesis produces the least satisfactory fit. This
demonstrates that the a-power hypothesis significantly enhances the accuracy of predicting
mortality or survival outcomes for individuals with unknown scores, establishing it as an

excellent hypothesis-fitting method.

4. Comparative analysis of four hypothesis fitting scenarios

When considering only the fitting performance of the three traditional assumptions, the



constant mortality assumption yields the most predictive fitting accuracy, followed by the
uniform distribution assumption, while the hyperbolic assumption is the least desirable. This
is specifically reflected in the following:

First, the intuitive plots of the three assumptions clearly show that the constant mortality
assumption provides a relatively suitable and reference-worthy fit for the survival function at
fractional ages. However, it also visually reveals its inadequacy in fitting the middle and later
stages of human age. Next, examining the three evaluation criteria, the constant mortality
assumption yields the smallest root mean square error (RMSE) at RMSE=2.48712E-05. Thus,
it can be concluded that the constant mortality assumption achieves a relatively high level of
fitting precision for the survival function at fractional ages, both in terms of visual graph
fitting and overall RMSE. Furthermore, its maximum absolute error is MAE=0.000126,
demonstrating its accuracy in local fitting. Considering the constant mortality assumption's
average absolute error (AAE) of 0.002495, this value further indicates that the constant
mortality assumption maintains a high level of overall fitting precision.

Analyzing Figures 3 and 4, which present the fitting results for the uniform distribution
hypothesis, we observe that the uniform distribution hypothesis initially demonstrates
relatively good fitting performance at the beginning of the curve. However, as age increases,
the fitting accuracy of the uniform distribution hypothesis gradually deteriorates. Among the
three evaluation criteria for fitting, the uniform distribution hypothesis exhibits a root mean
square error (RMSE) of 0.000371, which is at an intermediate level among the three
traditional assumptions. This leads to the conclusion that, overall, the uniform distribution
assumption exhibits poorer fitting precision than the constant mortality assumption but
performs better than the hyperbolic assumption. The mean absolute error (MAE) of the
uniform distribution assumption is 0.000127, also falls within the middle range among the
three traditional assumptions. This indicates that the uniform distribution assumption exhibits
average performance in local fitting accuracy. Furthermore, its average absolute error (AAE)
0f 0.0064741 confirms that the overall fitting accuracy of the uniform distribution assumption
is moderately positioned among the three traditional assumptions.

Finally, the visual comparison of predicted and actual values for the hyperbolic
assumption reveals consistently poor performance. Its root mean square error (RMSE) of
0.001082 indicating suboptimal overall fitting. The maximum absolute error (MAE) of
0.000128 suggests the hyperbolic assumption also performs poorly in local fitting of the
fractional age survival function. The average absolute error (AAE) of 0.012227 further
confirms the hyperbolic assumption's inferior fitting capability for fractional age survival
functions. In summary, whether assessed visually or through the three specific evaluation
criteria, the constant mortality assumption yields the best fit, followed by the uniform

distribution assumption, with the hyperbolic assumption producing the poorest fit. Therefore,



in practical applications, the constant mortality assumption or uniform distribution
assumption should be prioritized, with the hyperbolic assumption selected only as a last
resort.

Considering the fitted model analysis incorporating the a-power assumption, the visual
plot clearly demonstrates that the a-power hypothesis better fits the survival or mortality
distribution across the entire lifespan compared to the three traditional distribution
assumptions. From another perspective, examining the three error metrics, the o-power
hypothesis achieves the smallest values for both the root mean square error (RMSE) and the
maximum absolute error (MAE) among the four fitted models. Therefore, it can be concluded
that the a-power hypothesis overcomes the limitations of the three traditional assumptions in
fitting survival or mortality data during the middle and late stages of human life. maximum
absolute error (MAE), or average absolute error (AAE), the a-power hypothesis yields the
smallest values among the four fitted models. Therefore, it can be concluded that the a-power
hypothesis overcomes the shortcomings of the three traditional hypotheses in terms of
inaccurate fitting during the middle and late stages of life, thereby improving the precision of
predicting unknown survival or death at fractional ages. It is an excellent fractional age fitting
method.

As demonstrated by the liability reserve calculation formula below, insurance companies
base their fractional age reserve accruals on fractional age survival rates. Since the a-power
hypothesis effectively models fractional age survival patterns, its application in calculating
fractional age liability reserves enhances the precision of reserve amounts and yields the most
meaningful reference data. The following section specifically discusses net premium liability
reserves for term life insurance based on the a-power mortality assumption.

3. Net Premium Liability for Fractional-age Term Life Insurance under the
a -Power Mortality Assumption

This section primarily discusses the formula for calculating the net premium liability
reserve that insurance companies should set aside for policyholders at fractional ages under
the o-power assumption. For simplicity, the following three scenarios assume the
policyholder has purchased whole life insurance. Similar methods can be applied to calculate
and analyze other types of life insurance policies.

3.1 Lifetime life insurance liability reserve for death benefits paid at the end
of the year with annual premium payments

Assuming premiums are paid annually and the insurance benefit is paid at the end of the

year of the insured's death, with the death benefit at the end of the j+1 policy year being
b

41 » consider (x) whole life insurance policy with j . The net premium collected by the



insurer at the end of the policy year is 7, paid at the beginning of each policy year. Let the
liability reserve at the end of the A+¢ year be , V. _, which is the conditional mathematical
expectation of the prospective loss ,, L atage h-+t, where g is the integer age reached by

the person at age (x) at death, and t(O <t< 1) is the fraction of the year exceeding the

integer age.

When k(x)<h-1, ,,L=0 . When k(x)=h , hHL:vak(x)1 When
K(x) )
()2 hed Lo S
Jj=h+1

Then (x) the liability reserve at time A+ is .,V =E(,, Ll T(x)>h+t), and

N T 1-t .
h+t V =V bh+l l—th+h+t +v h+lVl—tpx+h+t H ﬁnally we have'

t —t qx+ - QX+ h
Vi DoinnsdV = ( WV, )l“—h o VP (1= t“t—l) (23)

x+h x+h
This indicates that the actuarial present value of the liability reserve at time is an
interpolation between the actuarial present values of the liability reserve at times A +¢ and
h+1.
Substitute the formula derived earlier for the age-specific mortality rate and survival rate

under the a-power assumption into the aforementioned liability reserve calculation formula.

a\l/a anl/a

—~ —~ 1—t+¢ —~

)(1 t+l]?x ) Py + h+le - ( P ) Py (24)
9t 9xii

t
VPV = (hV +7,

3.2 Lifetime life insurance liability reserve for death benefits paid at the end

of the year with m annual premium payments
For the sake of simplicity, we will illustrate the calculation of life insurance reserve for

multiple annual premiums using the example of two annual payments. Assume the

policyholder makes two payments per year, each amounting to 7, . The death benefit is
payable at the end of the policy year. The reserve at time /s +¢ is denotedas ,, Ve,

1
For 0<<t< > the forward formula yields

T
2) _ 1t 1-t 2) _*h 05~
h+tV =V bh+l l—th+h+z +v h+lV l—th+h+t v O.S—qu+h+t (25)

2

The first term on the right-hand side of the above equation represents the actuarial

present value of the insurance coverage amount for the current year. The second term denotes



the actuarial present value of the liability reserve at year-end. The third term signifies the

1
actuarial present value of the premium paid at time 4 + 5 during the year.
Multiplying both sides of the above equation by vtt P,., Yyields

7[/1

! 2 _ (2) 0.5
v tpx+h h+tV - Vbh+lt|1—th+h + Vh+1V px+h - v O.qu+h+t

(26)

For the year-end net reserves, the recursive formula is as follows:
v — p y@ Th (1 0.5 37
h = 0y VG T Vpx+h_? TV o sPesn) (27

Then we have:

(2) (2) 7Ty 0.5
WV =V vpx+h+2(1+v o,ipx+h)
b, v= (28)

qx+h

Substitute the above expression into the equation:

vttprrh h+tV(2) = (hV( Y + %)m-i_ [h+1V ¢ )Vprrh N %VO‘ 50 . pr +h ]( 1- - qx+h )

X+h X+h
(29)
The above formula indicates that the actuarial present value of the liability reserve at
time A-+? isequal to 4, which is a nonlinear interpolation between the opening liability
reserve attime /4 and the present value of the closing liability reserve at time /& +1.

Under the assumption that the mortality distribution is an a-power hypothesis, there is:

t
v tpx+h h+t

@ i, T A=t+tp. )" ) =p_,
v =y 4 Iy
' 2 .
aNl/a (30)
0.5 A-t+1p,") )= p,..

0.5Px +n
/.

For the second half of the year, similar to what is available:

T
(2) h
T VD _7"

t 2) _ (2) 0.5 72.]1 th—t qx+h Q) th—t qx+h
ViPenn? " =LV +(1+ Voo0.5Px s )?] pitV WP A= )

x+h 9y

(3D
Similarly, under the assumption that the death distribution is an a-power hypothesis,

there is:



la

7w, (I=t+tp. )" “—p_,
2 -
(1 _t+t]?xa)l/a _px+t
qx+t
For general life insurance products with m annual premium payments, similar treatment

vttp.wh h+tV(2) = [hV( K + (1 + v0~ 50< sPx v )
(32)

(2)
i VoVDL

can be applied.

As seen from the formula for fractional age reserves above, the reserve calculation is
influenced by both the predetermined interest rate and the fractional age survival rates. Since
interest rates are beyond an insurer's control, the decisive factor affecting fractional age
reserve calculations is the fractional age survival rates. Corresponding case studies will be
analyzed below. The comparative analysis of the a-power hypothesis model and three
traditional distribution assumptions in Section 2 demonstrates that employing the a-power
model enhances the accuracy of fractional age survival rate calculations. Consequently, using
the a-power model to fit fractional ages improves the precision of fractional age reserve

calculations.

3.3 Case analysis

In this section, fractional ages between 0-1 and 50-51 will be selected. Using data from
Table 1 (Male) of the Non-Pension Business section in the Chinese Life Insurance Industry
Experience Tables (2010-2013), specific net premium liability reserve values for life
insurance will be calculated based on an annual premium payment method. To highlight the
advantage of the a-power hypothesis in fractional age fitting, the uniform distribution
assumption—the most common among three traditional assumptions—is selected for
comparison with the a-power hypothesis. Considering that different interest rate levels may

affect calculation results, two distinct interest rates are chosen to eliminate such impacts. The

assumed interest rates are 0.025 and 0.05, L, =1000000 , respectively, with the benefit

amount set at unit 1. For policies with multiple annual premiums, calculations can be

performed as follows.

Calculation results for net premium liability reserves for fractional-age groups aged 0-1 years

Table 7
age UDD o-power
i=0.025 0.3 0.004516 0.004518
0.5 0.004368 0.004371
0.8 0.004143 0.004144
i=0.05 0.3 0.001558 0.001577
0.5 0.001329 0.001362




0.8 0.001085 0.001086

Calculation Results for Net Premium Liability Reserves for Age Groups 50-51

Table 8

age UDD a -power

1=0.025 50.3 0.421505 0.421507
50.5 0.423112 0.423118

50.8 0.425530 0.425533

1=0.05 50.3 0.260475 0.262530
50.5 0.263254 0.264499

50.8 0.267477 0.267480

Analysis of Table 7 and Table 8 reveals that:

First, results derived under the a-power mortality assumption yield larger values than
those under the uniform distribution assumption. Therefore, if liability reserves are calculated
based on the traditional assumption, it would lead to insufficient reserve provisions by
insurance companies to cover future claims payments, thereby impacting their financial
operations.

Second, although different interest rates appear to significantly impact the calculation of
liability reserves, the numerical difference between results under the two assumptions is
negligible. Therefore, varying interest rates should have no effect on liability reserve
calculations. The same principle applies to different ages. Although different age groups have
a substantial impact on the results, their effect on the difference between the two calculation
outcomes is negligible. Consequently, the influence of interest rate factors and age group
factors on the calculation of technical reserves can be disregarded.

From the above analysis, we observe that selecting different hypothetical models for
fractional-age liability reserve calculations yields varying outcomes. Employing a more
precise hypothesis—specifically the a-power hypothesis in this study—yields a more accurate
fit and a result closer to reality. Consequently, using the a-power hypothesis to calculate
fractional-age net premium liability reserves for life insurance reduces operational risks for

insurance companies.

4. Conclusion

The provisioning of life insurance reserves relates to an insurer's asset-liability
management and impacts its financial reporting. Uncertain survival status at fractional ages
also influences decisions made by insurance operators and judgments made by users of
financial reports. Enhancing the accuracy of fractional-age survival and mortality rate fitting
can mitigate these issues to a certain extent.

Regarding the superiority of fractional age fitting assumptions, the proportion of deaths



occurring at specific fractional ages exceeds that of deaths occurring precisely at integer ages.
Therefore, studying fractional age mortality and survival distributions holds greater
theoretical significance than relying solely on integer age data. Empirical evidence indicates
that the three traditional distribution assumptions exhibit significant limitations in fitting
fractional ages. Analysis in this paper demonstrates that employing Jones' a-power hypothesis
for fitting fractional-age mortality and survival yields substantially improved fitting precision
compared to the traditional assumptions. This superiority is evident both visually and through
three error evaluation metrics. or from the analysis of specific numerical fitting results, the
conclusion remains consistent: the a-power mortality assumption yields more precise fitting
for unknown fractional-age mortality or survival data compared to the three traditional
distribution assumptions. This finding provides insurers with a reference approach for
enhancing asset-liability management.

On the other hand, examining the formula for calculating life insurance policy reserves
directly reveals—through the reasoning and case analysis presented in the latter part of this
paper—that the calculation relies on survival rates and mortality rates based on fractional age.
Therefore, the precision of these rates directly impacts the accuracy of reserve accrual. In
accounting practices, policy reserves constitute a critical component of financial reporting,
impacting disclosures in financial statements that influence both internal and external users.
For internal stakeholders, an insurer's financial reports serve as vital decision-making
references for management, forming the foundation for future development. For external
users of financial information, these reports provide direct basis for judgment. Consequently,
insurers must enhance the accuracy of reserve calculations to optimize financial disclosure.

This paper demonstrates that under the a-power hypothesis proposed by Jones, the
goodness-of-fit for unknown fractional-age survival rates outperforms three traditional
hypothetical distributions. This approach improves the precision of fractional-age mortality
rate fitting and reserve calculation results to a certain extent. This conclusion provides a
reference method for insurance companies to enhance their actuarial management capabilities

and address the issue of accruing fractional-age reserves in company accounting.
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